Group 16 Elements - Oxygen

- Stable allotropes of oxygen are $O_2(g)$ and $O_3(g)$.
- Standard laboratory preparations for O₂(*g*) include the following:

$$2\text{KClO}_{3} \xrightarrow{\text{MnO}_{2}} 2\text{KCl} + 3\text{O}_{2}$$

$$2\text{HgO} \xrightarrow{\Delta} 2\text{Hg} + \text{O}_{2}$$

$$2\text{H}_{2}\text{O} \xrightarrow{\text{electrolysis}} 2\text{H}_{2} + \text{O}_{2}$$

- $O_2(g)$ is paramagnetic due to two unpaired electrons in separate π^* MOs: $(\sigma_{2s})^2(\sigma_{2p}^*)^2(\sigma_{2p})^2(\pi_{2p}^*)^2(\pi_{2p}^*)^2$
 - Bond order is 2, and the bond length is 120.75 pm.
- Ozone is produced by passing an electric discharge through O₂(g).
 - It is produced naturally by u.v. (240-300 nm).

$$O_2 \xrightarrow{hv} 2O$$

 $O + O_2 \rightarrow O_3$

- Ozone is a bent molecule ($\angle O-O-O = 116.8^{\circ}$).
 - Bond order is 1½ for each O–O bond, and the bond length is 127.8 pm.
- Both O₂ and O₃ are powerful oxidizing agents. O₂ + 4H⁺ + 4 $e^- \rightarrow 2H_2O$ O₃ + 2H⁺ + 2 $e^- \rightarrow O_2 + H_2O$ $E^\circ = +1.23 \text{ V}$ $E^\circ = +2.07 \text{ V}$

Group 16 Elements - Sulfur

- Sulfur is found free in nature in vast underground deposits.
 - It is recovered by the Frasch process, which uses superheated steam to melt and expel the fluid.

Sulfur Allotropes

- Three principal allotropes: rhombic, S₈ (<96 °C, mp = 112.8 °C) monoclinic, S₈ (>96 °C, mp = 119. °C) amorphous, S_n (metastable "plastic" sulfur)
 - Rhombic and monoclinic forms contain crown-shaped S_8 rings (D_{4d}) .

• Amorphous sulfur, containing long S_n chains, is formed when molten sulfur is rapidly quenched; conversion to rhombic S_8 can take years.

Group 16 Elements - Se, Te, Po

- Se is recovered as an impurity in sulfur deposits.
- Se has several solid allotropes: rhombic (red), monoclinic (red), black, hexagonal (gray).
 - Red forms contain Se₈ units.
 - Black form has large polymeric rings.
 - Gray form (thermodynamically most stable) contains infinite helical chains (Se–Se distance = 237 pm).
- Se is a poorly conducting semimetal in the dark, but its conductance increases >20 times in light.
- Te has one form, isostructural with gray Se.
- Polonium, Po, is usually obtained as ${}^{210}_{84}$ Po ($t_{\frac{1}{2}} = 138$ days).
 - Dangerous α emitter.
- Most common group oxidation states are -2, +4, +6.

Oxygen Chemistry - Ozone

- Ozone is one of the most powerful oxidants known.
 - Relative to O₂, its oxidations are generally faster and more vigorous.
- O₃ is photochemically produced in smog:

$$NO_2 \xrightarrow{hv} NO + O$$
$$O + O_2 \rightarrow O_3$$
$$O_3 + NO \rightarrow O_2 + NO_2$$

- O₃ reacts with hydrocarbons to produced oxygenated species, which are irritants and potentially carcinogens.
- Inhibits germination of plants, probably by destroying pollen.
- O₃ absorbs u.v strongly and is essential in the upper atmosphere.
 - O₃ is depleted by trace amounts of NO₂ or Cl· by a complicated series of reactions, including the following.

$NO_2 + O_3 \rightarrow NO_3 \rightarrow NO + O_3 \rightarrow O_3$	$NO_3 + O_2$ $NO + O_2$ $NO_2 + O_2$
$2O_3 \rightarrow$	3O ₂
$\begin{array}{ccc} \text{Cl} \cdot &+ \text{O}_3 &\rightarrow \\ \text{Cl} \text{O} \cdot &+ \text{O} &\rightarrow \end{array}$	$\begin{array}{l} \text{ClO} \cdot + \text{O}_2 \\ \text{Cl} \cdot + \text{O}_2 \end{array}$
$O_3 + O \rightarrow$	2O ₂

Oxygen Chemistry - Peroxide

• Hydrogen peroxide is a good oxidant and reductant, which leads to its tendency to decompose by autoredox.

 $\begin{array}{ll} {\rm H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O} & E^{\rm o} = 1.77 \ {\rm V} \\ {\rm H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-} & -E^{\rm o} = -0.68 \ {\rm V} \end{array}$

 $2H_2O_2 \rightarrow O_2 + 2H_2O$ $E^{o}_{cell} = 1.05 V$ • The reaction is catalyzed by light, Ag⁺, MnO₂, HBr, base, and saliva.

- H_2O_2 can be made by acidification of BaO_2 with H_2SO_4 : $BaO_2 + H_2SO_4 \rightarrow BaSO_4 \downarrow + H_2O_2$
- Today most is made by cold electrolysis of ammonium hydrogen sulfate to make peroxidsulfate, $S_2O_8^{2-}$, followed by heating to induce hydrolysis.

$$2\mathrm{NH}_{4}\mathrm{HSO}_{4}(aq) \xrightarrow{\mathrm{electrolysis}} (\mathrm{NH}_{4})_{2}\mathrm{S}_{2}\mathrm{O}_{8}(aq) + \mathrm{H}_{2}(g)$$
$$(\mathrm{NH}_{4})_{2}\mathrm{S}_{2}\mathrm{O}_{8}(aq) + 2\mathrm{H}_{2}\mathrm{O} \rightarrow 2\mathrm{NH}_{4}\mathrm{HSO}_{4}(aq) + \mathrm{H}_{2}\mathrm{O}_{2}(l)$$

• Reduced pressure fractional distillation gives a 98% pure product.

Oxygen Chemistry - Peroxide (cont.)

• In the gas phase H_2O_2 has the following C_2 structure, but the internal dihedral angle is very variable due to a low barrier to rotation.

• H_2O_2 is appreciably dissociated when pure.

$$2H_2O_2 \rightleftharpoons H_3O_2^+ + O_2H^ K = 1.5 \times 10^{-12}$$

- It has a higher dielectric constant (ε = 93) than water (ε = 78), and a 65% solution has an even higher dielectric constant (ε = 120).
- H₂O₂ would be a good ionizing solvent if it were not for its redox activity and tendency to decompose.

Hydrides of S, Se, Te

- All three dihydrides are poisonous and have obnoxious smells.
 - Toxicity of H₂S is far greater than HCN.
- H₂S dissolves in water at 1 atm to give a solution that is ~0.1M.
- All are weak acids.

H_2A	K_1	K_2
H_2S	1.02 x 10 ⁻⁷	$\sim 1 \ge 10^{-19}$
H ₂ Se	2 x 10 ⁻⁴	
H ₂ Te	2.3 x 10 ⁻³	

- Sulfide salts of transition metals and other heavy metals are among the most insoluble binary ionic compounds.
 - Their K_{sp} values¹ are so small that they precipitate even though the presumed concentration of S²⁻ ion in a saturated solution of H₂S is only ~10⁻¹⁹ M.

Compound	CdS	CuS	PbS	NiS	Ag ₂ S	SnS
K_{sp}	8 x 10 ⁻²⁸	6 x 10 ⁻³⁷	3 x 10 ⁻²⁸	3 x 10 ⁻²⁰	6 x 10 ⁻⁵¹	1 x 10 ⁻²⁶

¹For a solubility equilibrium of the type $MS(s) + H_2O \Rightarrow M^{2+}(aq) + HS^{-}(aq) + OH^{-}(aq)$

Does S²⁻(*aq*) Exist?

For many years, the value of the second dissociation constant of H_2S has been disputed, with most values in the range $pK_{a2} \ge 17$ for the presumed equilibrium

 $HS^- + H_2O \rightleftharpoons S^{2-} + H_3O^+$

The OECD Nuclear Energy Agency recommended approximate value² is $pK_{a2} = 19$.

Most determinations are based on observing the diminishing of the HS⁻ ion concentration under hyper-basic conditions (e.g., $C_{\text{NaOH}} = 8.9 - 21$ M) using markers such as the intensity of the ~2600 cm⁻¹ band in the Raman spectrum, owing to the presumed equilibrium

 $HS^- + OH^- \rightleftharpoons S^{2-} + H_2O$

Recently, May et al.³ have shown that the Raman data better fit the production of NaS⁻ under such conditions.

$$HS^- + OH^- + Na^+ \Rightarrow NaS^- + H_2O$$

 \mathbb{S} "... $S^{2-}(aq)$ should be expunded from the chemical literature."

²R. J. Lemire, U. Berner, C. Musikas, D. A. Palmer, P. Taylor, and O. Tochiyama, Organization for Economic Cooperation and Development Chemical Thermodynamics Series, *Chemical Thermodynamics of Iron Part 1*, OECS, 2013, vol. 13a.

³P. M. May, D. Batka, G. Hefter, E. Königsberger, and D. Rowland, *Chem. Comm.*, 2018, **54**, 1980-1983.

Oxides

- Both +4 and +6 oxides, oxoanions, and oxoacids exist.
- Burning the element in air yields the dioxide; e.g., $S + O_2 \rightarrow SO_2$
 - SO₂ is a gas, structurally similar to ozone, but its liquid (bp -10 °C) is a useful nonaqueous solvent dispite its low dielectric constant ($\epsilon \approx 15$).
 - SeO₂ is a volatile solid with a chain structure.

- TeO₂ is a nonvolatile solid with a three dimensional structure having four-coordinated Te.
- PoO is a nonvolatile solid with the fluorite (CaF_2) structure.
- Only important trioxide is SO₃, formed by oxidizing SO₂ in the *contact process*.

$$2SO_2 + O_2 \xrightarrow{V_2O_5} 2SO_3$$

- SO₃ is planar (D_{3h}) with π delocalization (bond order 1¹/₃).
- SeO₃ is made by dehydrating H_2SeO_4 with P_4O_{10} at 160 °C.
- TeO_3 , an orange solid, is made by dehydrating $Te(OH)_6$.

Sulfur Oxoacids - H₂SO₃

- SO₂ dissolves in water to give an acidic solution generally called "sulfurous acid," but H₂SO₃ either does not exist or is present in only vanishingly small concentration.
- The equilibria in aqueous solution should be written as follows:

 $SO_{2} + xH_{2}O \rightleftharpoons SO_{2} \cdot xH_{2}O$ (hydrated SO₂) $SO_{2} \cdot xH_{2}O \rightleftharpoons HSO_{3}^{-} + H_{3}O^{+} + (x-2)H_{2}O$ $SO_{2} \cdot xH_{2}O \rightleftharpoons H_{2}SO_{3}$ K << 1

• The first acid hydrolysis constant, K_1 , is

$$K_1 = \frac{[\text{HSO}_3^-][\text{H}_3\text{O}^+]}{[\text{SO}_2]} = 1.3 \times 10^{-2}$$

where $[SO_2] = C_{SO_2} - [HSO_3^{-}] - [SO_3^{2-}].$

• K_2 is the acid hydrolysis constant of the hydrogen sulfite ion:

$$K_2 = \frac{[SO_3^{2^-}][H_3O^+]}{[HSO_3^-]} = 5.6 \times 10^{-8}$$

Sulfur Oxoacids - H₂SO₄

- Sulfuric acid is formed when SO₃ is dissolved in water: SO₃ + H₂O \rightarrow H₂SO₄
 - Reaction is too exothermic to serve as a commercial process for making sulfuric acid.

•
$$K_1 >> 1, K_2 = 1.2 \times 10^{-2}$$

- Most sulfuric acid is made by the *contact process*:
 - (1) Oxidation of SO_2

$$2SO_2 + O_2 \xrightarrow{V_2O_5} 2SO_3$$

- (2) Bubbling through concentrated H_2SO_4 to make "oleum", $H_2S_2O_7$ (*pyrosulfuric acid*). $SO_3(g) + H_2SO_4(l) \rightarrow H_2S_2O_7(l)$
- (3) Dilution to make sulfuric acid of the desired concentration.

 $H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$

- Concentrated sulfuric acid, as supplied for laboratory use, is 98%.
- Concentrated sulfuric acid has a powerful avidity for water and can be used as a dehydrating agent in desiccators, provided that the substance being dried is not acid sensitive.

Selenium and Tellurium Oxoacids

• SeO₂ dissolves in water to give $H_2SeO_3 = (OH)_2SeO (K_1 = 2.3 \times 10^{-3}, K_2 = 5.3 \times 10^{-9}).$

$$SeO_2 + H_2O \rightarrow H_2SeO_3$$

- It is a moderately strong oxidizing agent: $H_2SeO_3 + 4H^+ + 4e^- \Rightarrow Se + 3H_2O$ $E^\circ = 0.74 V$
- H₂TeO₃ (uncertain structure) is best made by hydrolysis of a tetrahalide, because TeO₂ is not soluble in water; e.g., TeCl₄ + 3H₂O → H₂TeO₃ + 4HCl
- SeO₃ is difficult to obtain, but H₂SeO₄ can be synthesized by oxidizing H₂SeO₃ with H₂O₂.

 $H_2SeO_3 + H_2O_2 \rightarrow H_2SeO_4 + H_2O$

- Dehydration with P₄O₁₀ gives SeO₃.
- Pure H₂SeO₄ is a clear solid (mp 57 °C).
- H_2SeO_4 is somewhat less strong than H_2SO_4 ($K_1 >> 1$; $K_2 = 1.2 \times 10^{-2}$).
- Te(OH)₆ is the tellurium +6 oxoacid, made by oxidizing TeO₂:

$$TeO_2 + H_2O_2 + 2H_2O \rightarrow Te(OH)_6$$

• It is a very weak diprotic acid $(K_1 \approx 10^{-7})$ with an octahedral structure.

Sulfur Oxo- and Thio- Ions

• Sulfur forms a number of acids and oxoanions with –O–, O–O, and S–S bonds.

Name	Formula	Bond type
thiosulfuric	$H_2S_2O_3$	S–S
dithionous	$H_2S_2O_4$	S–S
disulfurous	$H_2S_2O_5$	S–S
dithionic	$H_2S_2O_6$	S–S
disulfuric	$H_2S_2O_7$	S-O-S
polythionic	$H_2S_{n+2}O_6$	$S-S_n-S$
peroxomonosulfuric	H_2SO_5	S-O-OH
peroxidisulfuric	$H_2S_2O_8$	S-O-O-S

- Peroxydisulfate is formed by cold electrolysis of H_2SO_4 .
 - It is a very strong oxidant. $S_2O_8^{2-} + 4H^+ + 2e^- \rightarrow 2H_2SO_4$ $E^\circ = +2.01 \text{ V}$
- Solutions of SO_3^{2-} in contact with solid sulfur form thiosulfate, $S_2O_3^{2-}$, a tetrahedral ion with $C_{3\nu}$ symmetry. $SO_3^{2-}(aq) + S(s) \rightarrow S_2O_3^{2-}(aq)$
 - It acts as a mild reducing agent, producing tetrathionate ion:

$$2S_{2}O_{3}^{2-} \rightarrow S_{4}O_{6}^{2-} + 2e^{-} \qquad -E^{\circ} = -0.08 \text{ V}$$

$$\begin{bmatrix} O & O \\ O & -S & -S & -S & -O \\ O & O & 0 \end{bmatrix}^{2-}$$

Sulfur Catenation

- Sulfur shows limited ability to catenate, as seen in the dithionate ion.
- The S–S bond (*D* = 429 kJ) is competitive with the S-O bond (*D* = 522 kJ).
 - This allows some chain species to form, as in sulfur's allotropes.
- When sulfide solutions are heated with sulfur, solutions containing mostly S_3^{2-} and S_4^{2-} are formed.

$$S^{2-} + xS(s) \to S_{x+1}^{2-}$$
 $x = 2,3,.$

• Only S_3^{2-} and S_4^{2-} are stable in solution, but a number of crystalline compounds with S_n^{2-} ions with n = 3-6 can be prepared, especially with large cations (e.g., Cs^+ , NH_4^+ , enH_2^{2+}).

Halides and Oxohalides

- A large number of halides are known.
- The only hexabalides are SF_6 , SeF_6 and TeF_6 .
- The MX_4 halides exist for X = F, Cl, Br
 - The only +4 iodide is TeI_4 .
- A number of dihalides and dimeric monohalides are known; e.g., OF₂, O₂F₂, S₂Cl₂, SCl₂, Se₂Cl₂, SeCl₂, S₂F₂, S₂Cl₂, ...
- Sulfur has two important oxohalides, SO₂Cl₂ (sulfuryl chloride) and SOCl₂ (thionyl chloride).
 - Thionyl chloride is an effective dehydrating agent for hydrated metal chlorides that would decompose with heating:

 $\begin{aligned} &\text{SOCl}_2 + \text{H}_2\text{O} \rightarrow \text{SO}_2 + 2\text{HCl} \\ &\text{M}_m\text{Cl}_n \cdot x\text{H}_2\text{O} + x\text{SOCl}_2 \rightarrow \text{M}_m\text{Cl}_n + x\text{SO}_2 + 2x\text{HCl} \end{aligned}$